Establishing an ECD (Electro Chemical Detector)-HPLC System Using a Unique Diamond Electrode High-precision Quantitative Analysis of SAA (Sulfur Amino Acids)

Summary

Therefore we have developed a special stabilization-treated conductive

Junichi Isegawa ¹, Akira Nakayama ¹, Naoko Arashida ¹, Izumi Miyazaki ², Takao Tamura ² ¹AJINOMOTO CO., INC. Pharmaceutical Research Lab. ²GL Sciences Inc.

Pre-Co Columi Solven Flow Detect injectic Pre-Tre	n : lumn : n temp. : t : t : on : eatment :	Inertsil OI Inertsil OI 45 C 25mM H ₃ I 0.75 mL/r ECD with 10uL deproton	OS-3 3.0m OS-3 3.0m PO₄-20mN nin Diamond (On-L ation usir	m i.d.X10 m i.d.X 1 I Heptane electrode ine Repro	0mm 3ur 0mm 3ur esulufonio e, Applied oduction	m(GL Scie n (GL Scie c Acid/CH l voltage 1 4000mV with solve	ences) ences) ₃ CN = 98.9 1600mV for 1min ent	5/1.5 (v/v) .)			
< I St	H <mark>ow to</mark> bike	estimat Lo 1	te accu w limit (1/2-1/3 (r <mark>acy of</mark> quantifi of endo	endoge ication s genous	enous c should l concen	ompou be set a tration.	nd> t			
Endo	genous	Aeasu Value Spikee	ired of d sample	Er	ndogeno	ous	Measure Value of Blank sa	d mple			
<ev< td=""><td>valuatio</td><td>o<mark>n of Int</mark> Criteria o</td><td>Spike :ra-day f FDA Gu</td><td>Precisi</td><td>eoretica ue on : Accurac</td><td>l Spike y 85 - 11</td><td>d plasr 5%, Pred</td><td><mark>na sam</mark> cision <1</td><td><mark>ples></mark> 5%</td><td></td><td></td></ev<>	valuatio	o <mark>n of Int</mark> Criteria o	Spike : ra-day f FDA Gu	Precisi	eoretica ue on : Accurac	l Spike y 85 - 11	d plasr 5%, Pred	<mark>na sam</mark> cision <1	<mark>ples></mark> 5%		
	Cys			GSH			Нсу			Cys-Cys	
Conc. umol/L)	Accuracy (%)	Precision (%)	Conc. (umol/L)	Accuracy (%)	Precision (%)	Conc. (umol/L)	Accuracy (%)	Precision (%)	Conc. (umol/L)	Accuracy (%)	Precision (%)
12	99.7	6.9	6	86	7.5	12	96.2	3.7	30	100.5	6.7
<u> </u>	103.2	2.2	30	99.4	3.5	60	103.5	2.5	120	112	9.7
60			1 - 0	1010	2 5	200	100.9	34	750	110 3	26

C	ys	G	SH	Н	су	Cys	-Cys	_
Conc. (umol/L)	Accuracy (%)	Conc. (umol/L)	Accuracy (%)	Conc. (umol/L)	Accuracy (%)	Conc. (umol/L)	Accuracy (%)	
6	98.3	3	100.4	6	103.9	15	99.4	
12	104.3	6	99.7	12	96.3	30	102.4	
30	104	15	100.2	30	99	75	97	
60	102.4	30	100.2	60	102	150	86.8	
120	96.9	60	98.8	120	99.4	300		
300	91	150	100.5	300	100	750	108.4	
Waight	$1/X^{2}$	Waight	1/X ²	Waight	1/X ²	Waight	1/X ²	

A taste of the future. **AJINOMOTO**_® **GET SCIENCES INC.**

Validation of new method for nutrition injection formulation According to ICH guideline Q2A and Q2B

All items met the criteria according to ICH guideline

		_
teristics	L-Cysteine	L-Cystine
ificity	Good	Good
arity elation icient)	0.9999	0.9999
uracy overy)	99.8 ~ 102.9%	99.3~100.9%
tability	0.9%	0.7%
te Precision	Good	Good
tion Limit	0.16	0.0074

There were no difference between the original and new method !!

	L-Cys	teine	L-Cys	tine
	Original Method	New Method	Original Method	New Method
	Conc.	Conc.	Conc.	Conc.
า ร	100.2 101.0 99.3	98.6 98.3 99.7	2.1 1.2 1.6	1.1 1.1 1.2

Comparison of Original method and New method

5	Original Method	New Method	
method	Compatible	Not Compatible	
	Cysteine: 360min. Per 20 Samples Cystine : 135min. Per 1 Sample	20min. Per 1 Sample	
Day	Cysteine: 20 Samples Cystine : 11 Samples	Cysteine and Cysitine: 70 Samples	
er	6 days	1.5 days	ļ

Overcome the existing problems of ECD by the state-of-the-art technology !!